Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Signal ; 15(759): eabi8713, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36346838

RESUMEN

Excessive signaling by the proinflammatory cytokine TNF is involved in several autoimmune diseases, including rheumatoid arthritis (RA). However, unlike the approved biologics currently used to treat this and other conditions, commercially available small-molecule inhibitors of TNF trimerization are cytotoxic or exhibit low potency. Here, we report a TNF-inhibitory molecule (TIM) that reduced TNF signaling in vitro and was an effective treatment in a mouse model of RA. The initial lead compound, TIM1, attenuated TNF-induced apoptosis of human and mouse cells by delaying the induction of proinflammatory NF-κB and MAPK signaling and caspase 3- and caspase 8-dependent apoptosis. TIM1 inhibited the secretion of the proinflammatory cytokines IL-6 and IL-8 by disrupting TNF homotrimerization, thereby preventing its association with the TNF receptor. In a mouse model of collagen-induced polyarthritis, the more potent TIM1 analog TIM1c was orally bioavailable and reduced paw swelling, histological indicators of knee joint pathology, inflammatory infiltration of the joint, and the overall arthritis index. Orally delivered TIM1c showed immunological effects similar to those elicited by intraperitoneal injection of the FDA-approved TNF receptor decoy etanercept. Thus, TIM1c is a promising lead compound for the development of small-molecule therapies for the treatment of RA and other TNF-dependent systemic inflammation disorders.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratones , Humanos , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Inhibidores del Factor de Necrosis Tumoral , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , FN-kappa B , Citocinas , Receptores del Factor de Necrosis Tumoral , Modelos Animales de Enfermedad
2.
Stem Cells Int ; 2022: 4537335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36187228

RESUMEN

The induced pluripotent stem cells (iPSCs) are considered powerful tools in pharmacology, biomedicine, toxicology, and cell therapy. Multiple approaches have been used to generate iPSCs with the expression of reprogramming factors. Here, we generated iPSCs by integrating the reprogramming cassette into a genomic safe harbor, CASH-1, with the use of a precise genome editing tool, CRISPR/Cas9. The integration of cassette at CASH-1 into target cells did not alter the pattern of proliferation and interleukin-6 secretion as a response to ligands of multiple signaling pathways involving tumor necrosis factor-α receptor, interleukin-1 receptor, and toll-like receptors. Moreover, doxycycline-inducible expression of OCT4, SOX2, and KLF4 reprogrammed engineered human dermal fibroblasts and human embryonic kidney cell line into iPSCs. The generated iPSCs showed their potential to make embryoid bodies and differentiate into the derivatives of all three germ layers. Collectively, our data emphasize the exploitation of CASH-1 by CRISPR/Cas9 tool for therapeutic and biotechnological applications including but not limited to reprogramming of engineered cells into iPSCs.

3.
ACS Chem Neurosci ; 13(6): 818-833, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35196855

RESUMEN

Aberrant activation of the Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays an essential role in multiple diseases, including Alzheimer's disease (AD) and psoriasis. We report a novel small-molecule inhibitor, NLRP3-inhibitory compound 7 (NIC7), and its derivative, which inhibit NLRP3-mediated activation of caspase 1 along with the secretion of interleukin (IL)-1ß, IL-18, and lactate dehydrogenase. We examined the therapeutic potential of NIC7 in a disease model of AD by analyzing its effect on cognitive impairment as well as the expression of dopamine receptors and neuronal markers. NIC7 significantly reversed the associated disease symptoms in the mice model. On the other hand, NIC7 did not reverse the disease symptoms in the imiquimod (IMQ)-induced disease model of psoriasis. This indicates that IMQ-based psoriasis is independent of NLRP3. Overall, NIC7 and its derivative have therapeutic prospects to treat AD or NLRP3-mediated diseases.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Psoriasis , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Disfunción Cognitiva/tratamiento farmacológico , Inflamasomas , Interleucina-1beta , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Psoriasis/inducido químicamente
4.
Front Cell Dev Biol ; 9: 761709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34901007

RESUMEN

The diverse applications of genetically modified cells and organisms require more precise and efficient genome-editing tool such as clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas). The CRISPR/Cas system was originally discovered in bacteria as a part of adaptive-immune system with multiple types. Its engineered versions involve multiple host DNA-repair pathways in order to perform genome editing in host cells. However, it is still challenging to get maximum genome-editing efficiency with fewer or no off-targets. Here, we focused on factors affecting the genome-editing efficiency and precision of CRISPR/Cas system along with its defense-mechanism, orthologues, and applications.

5.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203170

RESUMEN

Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1ß, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.


Asunto(s)
Comamonadaceae/química , Flagelina/farmacología , Inmunidad Innata/fisiología , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inmunidad Innata/genética , Interleucina-18/metabolismo , Interleucina-6/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 22(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33401508

RESUMEN

Reversal in the transcriptional status of desired genes has been exploited for multiple research, therapeutic, and biotechnological purposes. CRISPR/dCas9-based activators can activate transcriptionally silenced genes after being guided by gene-specific gRNA(s). Here, we performed a functional comparison between two such activators, VP64-dCas9-VP64 and dCas9-VP192, in human embryonic kidney cells by the concomitant targeting of POU5F1 and SOX2. We found 22- and 6-fold upregulations in the mRNA level of POU5F1 by dCas9-VP192 and VP64-dCas9-VP64, respectively. Likewise, SOX2 was up-regulated 4- and 2-fold using dCas9-VP192 and VP64dCas9VP64, respectively. For the POU5F1 protein level, we observed 3.7- and 2.2-fold increases with dCas9-VP192 and VP64-dCas9-VP64, respectively. Similarly, the SOX2 expression was 2.4- and 2-fold higher with dCas9-VP192 and VP64-dCas9-VP64, respectively. We also confirmed that activation only happened upon co-transfecting an activator plasmid with multiplex gRNA plasmid with a high specificity to the reference genes. Our data revealed that dCas9-VP192 is more efficient than VP64-dCas9-VP64 for activating reference genes.


Asunto(s)
Proteína 9 Asociada a CRISPR , Edición Génica/métodos , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción SOXB1/genética , Activación Transcripcional , Regulación de la Expresión Génica , Células HEK293 , Humanos , ARN Mensajero , Regulación hacia Arriba
7.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322533

RESUMEN

Direct inhibition of tumor necrosis factor-alpha (TNF-α) action is considered a promising way to prevent or treat TNF-α-associated diseases. The trimeric form of TNF-α binds to its receptor (TNFR) and activates the downstream signaling pathway. The interaction of TNF-α with molecular-grade dimethyl sulfoxide (DMSO) in an equal volumetric ratio renders TNF-α inert, in this state, TNF-α fails to activate TNFR. Here, we aimed to examine the inhibition of TNF-α function by various concentrations of DMSO. Its higher concentration led to stronger attenuation of TNF-α-induced cytokine secretion by fibroblasts, and of their death. We found that this inhibition was mediated by a perturbation in the formation of the functional TNF-α trimer. Molecular dynamics simulations revealed a transient interaction between DMSO molecules and the central hydrophobic cavity of the TNF-α homodimer, indicating that a brief interaction of DMSO with the TNF-α homodimer may disrupt the formation of the functional homotrimer. We also found that the sensitizing effect of actinomycin D on TNF-α-induced cell death depends upon the timing of these treatments and on the cell type. This study will help to select an appropriate concentration of DMSO as a working solvent for the screening of water-insoluble TNF-α inhibitors.


Asunto(s)
Dimetilsulfóxido/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Western Blotting , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos
8.
Pharmaceutics ; 12(10)2020 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050544

RESUMEN

The immune system plays a crucial role in the body's defense system against various pathogens, such as bacteria, viruses, and parasites, as well as recognizes non-self- and self-molecules. The innate immune system is composed of special receptors known as pattern recognition receptors, which play a crucial role in the identification of pathogen-associated molecular patterns from diverse microorganisms. Any disequilibrium in the activation of a particular pattern recognition receptor leads to various inflammatory, autoimmune, or immunodeficiency diseases. Aptamers are short single-stranded deoxyribonucleic acid or ribonucleic acid molecules, also termed "chemical antibodies," which have tremendous specificity and affinity for their target molecules. Their features, such as stability, low immunogenicity, ease of manufacturing, and facile screening against a target, make them preferable as therapeutics. Immune-system-targeting aptamers have a great potential as a targeted therapeutic strategy against immune diseases. This review summarizes components of the innate immune system, aptamer production, pharmacokinetic characteristics of aptamers, and aptamers related to innate-immune-system diseases.

9.
Genes (Basel) ; 11(2)2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012695

RESUMEN

Inflammasomes are intracellular multiprotein complexes in the cytoplasm that regulate inflammation activation in the innate immune system in response to pathogens and to host self-derived molecules. Recent advances greatly improved our understanding of the activation of nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasomes at the molecular level. The NLRP3 belongs to the subfamily of NLRP which activates caspase 1, thus causing the production of proinflammatory cytokines (interleukin 1ß and interleukin 18) and pyroptosis. This inflammasome is involved in multiple neurodegenerative and metabolic disorders including Alzheimer's disease, multiple sclerosis, type 2 diabetes mellitus, and gout. Therefore, therapeutic targeting to the NLRP3 inflammasome complex is a promising way to treat these diseases. Recent research advances paved the way toward drug research and development using a variety of machine learning-based and artificial intelligence-based approaches. These state-of-the-art approaches will lead to the discovery of better drugs after the training of such a system.


Asunto(s)
Enfermedades Metabólicas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Alzheimer/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Enfermedades Metabólicas/terapia , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Enfermedades Neurodegenerativas/terapia
10.
Cancers (Basel) ; 12(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012718

RESUMEN

Toll-like receptors (TLRs) represent a family of pattern recognition receptors that recognize certain pathogen-associated molecular patterns and damage-associated molecular patterns. TLRs are highly interesting to researchers including immunologists because of the involvement in various diseases including cancers, allergies, autoimmunity, infections, and inflammation. After ligand engagement, TLRs trigger multiple signaling pathways involving nuclear factor-κB (NF-κB), interferon-regulatory factors (IRFs), and mitogen-activated protein kinases (MAPKs) for the production of various cytokines that play an important role in diseases like cancer. TLR activation in immune as well as cancer cells may prevent the formation and growth of a tumor. Nonetheless, under certain conditions, either hyperactivation or hypoactivation of TLRs supports the survival and metastasis of a tumor. Therefore, the design of TLR-targeting agonists as well as antagonists is a promising immunotherapeutic approach to cancer. In this review, we mainly describe TLRs, their involvement in cancer, and their promising properties for anticancer drug discovery.

11.
Pharmaceutics ; 11(9)2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480568

RESUMEN

The built-in innate immunity in the human body combats various diseases and their causative agents. One of the components of this system is Toll-like receptors (TLRs), which recognize structurally conserved molecules derived from microbes and/or endogenous molecules. Nonetheless, under certain conditions, these TLRs become hypofunctional or hyperfunctional, thus leading to a disease-like condition because their normal activity is compromised. In this regard, various small-molecule drugs and recombinant therapeutic proteins have been developed to treat the relevant diseases, such as rheumatoid arthritis, psoriatic arthritis, Crohn's disease, systemic lupus erythematosus, and allergy. Some drugs for these diseases have been clinically approved; however, their efficacy can be enhanced by conventional or targeted drug delivery systems. Certain delivery vehicles such as liposomes, hydrogels, nanoparticles, dendrimers, or cyclodextrins can be employed to enhance the targeted drug delivery. This review summarizes the TLR signaling pathway, associated diseases and their treatments, and the ways to efficiently deliver the drugs to a target site.

12.
Genes (Basel) ; 8(8)2017 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-28783137

RESUMEN

The nucleosome surface is covered with multiple modifications that are perpetuated by eight different classes of enzymes. These enzymes modify specific target sites both on DNA and histone proteins, and these modifications have been well identified and termed "epigenetics". These modifications play critical roles, either by affecting non-histone protein recruitment to chromatin or by disturbing chromatin contacts. Their presence dictates the condensed packaging of DNA and can coordinate the orderly recruitment of various enzyme complexes for DNA manipulation. This genetic modification machinery involves various writers, readers, and erasers that have unique structures, functions, and modes of action. Regarding human disease, studies have mainly focused on the genetic mechanisms; however, alteration in the balance of epigenetic networks can result in major pathologies including mental retardation, chromosome instability syndromes, and various types of cancers. Owing to its critical influence, great potential lies in developing epigenetic therapies. In this regard, this review has highlighted mechanistic and structural interactions of the main epigenetic families with their targets, which will help to identify more efficient and safe drugs against several diseases.

13.
J Microbiol ; 54(8): 573-81, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27480638

RESUMEN

Proteins encoded by the Pseudomonas aeruginosa pvcA-D operon synthesize a novel isonitrile functionalized cumarin termed paerucumarin. The pvcA-D operon enhances the expression of the P. aeruginosa fimbrial chaperone/usher pathway (cup) genes and this effect is mediated through paerucumarin. Whether pvcA-D and/or paerucumarin affect the expression of other P. aeruginosa genes is not known. In this study, we examined the effect of a mutation in pvcA-D operon the global transcriptome of the P. aeruginosa strain PAO1-UW. The mutation reduced the expression of several ironcontrolled genes including pvdS, which is essential for the expression of the pyoverdine genes. Additional transcriptional studies showed that the pvcA-D operon is not regulated by iron. Exogenously added paerucumarin enhanced pyoverdine production and pvdS expression in PAO1-UW. Iron-chelation experiments revealed that purified paerucumarin chelates iron. However, exogenously added paerucumarin significantly reduced the growth of a P. aeruginosa mutant defective in pyoverdine and pyochelin production. In contrast to other secondary metabolite, Pseudomonas quinolone signal (PQS), paerucumarin is not localized to the P. aeruginosa membrane vesicles. These results suggest that paerucumarin enhances the expression of iron-controlled genes by chelating iron within the P. aeruginosa extracellular environment. Although paerucumarin chelates iron, it does not function as a siderophore. Unlike PQS, paerucumarin is not associated with the P. aeruginosa cell envelope.


Asunto(s)
Vesículas Extracelulares/metabolismo , Hierro/metabolismo , Pseudomonas aeruginosa/metabolismo , Metabolismo Secundario , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vesículas Extracelulares/genética , Regulación Bacteriana de la Expresión Génica , Mutación , Oligopéptidos/metabolismo , Operón , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...